تحقیق مقاله تاریخچه مختصر ریاضیات

تعداد صفحات: 30 فرمت فایل: word کد فایل: 1843
سال: مشخص نشده مقطع: مشخص نشده دسته بندی: تحقیق مقاله ریاضی
قیمت قدیم:۶,۰۰۰ تومان
قیمت: ۳,۹۰۰ تومان
دانلود فایل
کلمات کلیدی: خیام - ریاضی‌ - ریاضیات
  • خلاصه
  • فهرست و منابع
  • خلاصه تحقیق مقاله تاریخچه مختصر ریاضیات

    اولین مطلب :

    تاریخ را معمولا غربیها نوشته اند، و تا آنجا که توانسته اند آن را به نفع خود مصادره کرده اند. بنابراین نمی توان انتظار داشت نوادگان اروپائیانی

    که سیاهان آفریقا را در حد یک حیوان پائین آورده و آنها را به بردگی کشانده اند، آنها را انسانهائی با سوابق کهن تاریخی و علمی معرفی نمایند.

    البته این کلام مصداق کلی ندارد، و فقط اشاره به جریان حاکم در تاریخنگاری غربیها دارد.

    قبل از تاریخ

    انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجه‌هایش را می‌داند انجام می‌داد. اما بزودی مجبور شد وسیله شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده می‌باشد قدیمی‌ترین دستگاه شماری است که آثاری از آن در کهن‌ترین مدارک موجود یعنی نوشته‌های سومری مشاهده می‌شود.

    سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین‌النهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند.

    در نخستین قرون تاریخ چهار ریاضی‌دان مشهور در این کشور وجود داشت که عبارت بودند از:

    آپاستامبا(قرن پنجم)، آریاب هاتا (قرن ششم)، براهماگوپتا (قرن هفتم) و بهاسکارا (قرن نهم) که در کتب ایشان بخصوص قواعد تناسب ساده و ربح مرکب مشاهده می‌شود. محاسبات در این کتابها جنبه شاعرانه داشت و حتی نام علم حسابرا (لیلاواتی) گذارده بودندکه معنی دلبری و افسونگری دارد. با شروع قرن دهم پیشرفت کشفیات ریاضی در هندوستاننیز متوقف گردید و مشعل فروزان علم بدست اعراب افتاد.

    در سال 622م که حضرت محمدصلی الله علیه و آله وسلم از مکه هجرت فرمود در واقع آغاز شگفتی تمدن اسلام بود. اعراب که جنبش شدید خود را از سده هفتم آغاز کرده بودند پس از رحلت پیغمبر اسلام در 632 به توسعه سرزمینهای خود پرداختند و بزودی تمام ممالک آفریقائی ساحل مدیترانه را متصرف شدند.

    و این توسعه‌طلبی ایشان را در اروپاتا اسپانیاو در آسیاتا هندوستانکشانید و در نتیجه تماس با کشورهای مغلوب که مردم آنها غالباً دارای تمدن عالی بودند ذوق شدیدی به آموختن در ایشان بوجود آمد. لذا با سهولت و چالاکی فرهنگ ممالک دست نشانده را پذیرفتند.

    در زمان مامون خلیفه عباسی تمدن اسلام بحد اعتلای خود رسید بطوری که از اواسط قرن هشتم تا اواخر قرن یازدهم زبان عربی علمی بین‌المللی گردید.

    از ریاضی‌ دانان بزرگ اسلامی یکی خوارزمی می‌باشد که در سال 820 به هنگام خلافت مأمون در بغدادکتاب مشهورالجبر و المقابله را نگاشت.وی در این کتاب بدون آنکه از حروف و علامات استفاده کند، حل معادله درجه اول را بدو طریقی که ما امروزه جمع جبری جمل و نقل آنها از یکطرف بطرف دیگر می‌نامیم، انجام داده است دیگر ابوالوفا (998_ 938) است که جداول مثلثاتی ذیقیمتی پدید آورده و بالاخره محمدبن هیثم(1039_ 965) معروف به الحسن را باید نام بردکه صاحب تألیفات بسیاری در ریاضیات و نجوم است.قرون وسطی از قرن پنجم تا قرن دوازدهم یکی از دردناکترین ادوار تاریخی اروپاست. عامه مردم در منتهای فلاکت و بدبختی بسر می‌بردند. جنگهای متوالی و قتل و غارت و از طرف دیگر نفوذ کلیسا آنچنان فکر مردم را به خود مشغول داشته بود که هیچ کس فرصت آنرا نمی‌یافت که در فکر علم باشد، آری مدت هفت قرن تمام اروپا محکوم به این بود که بار گران جهل و نادانی را بر دوش کشد. در اواخر قرن دهم ژربر فرانسوی کوشید تا به کمک مطالبی که در چند مدرسه از کلیساهای بزرگ اروپا آموخته بود پیشرفت جدیدی به علوم مقدماتی بدهد. وی دستگاه مخصوص را که برای محاسبه بکار می‌رفت اصلاح کرد. این دستگاه همان چرتکه بود.برجسته‌ترین نامهائی که در این دوره ملاحظه می‌نمائیم، در مرحله اول لئوناردیوناکسی (1220_1170) ریاضی‌دان ایتالیائی است. وی که مدتهادر مشرق زمین اقامت کرده بود، آثار برخی از دانشمندان اسلامی را از آنجا به ارمغان آورد. همچنین برای اولین بار علم جبررا در هندسهمورد استفاده قرار داد. دیگر نیکلاارسم فرانسوی می‌باشد که باید او را پیشقدم هندسه تحلیلیدانست. وی اولین کسی است که نه تنها مجذور و مکعب و توانهای چهارم و پنجم اعدادرا در نظر گرفت بلکه اعدادرا بقوای کسری از قبیل یک دوم و دو سوم و یک هفتم و غیره نیز رسانید و به عبارت دیگر وانهای کسری اعدادرا بدست آورد.

    تاریخچه مسایلی که ایرانیان مطرح کردند:

    الف) جمشید غیاث الدین کاشانی در کتاب مفتاح الحساب قاعده ای کلی برای استخراج ریشه های n ام ارائه کرده است که این روش همان روش روفینی ‌هورنر است که در سده ی 19 میلادی در اروپا ارائه شد .

    ب) شرف الدین تاج الزمان حسین بن حسن سمرقندی ، ریاضی دان مسلمان ایرانیِ قرن سیزدهم میلادی که تاکنون در تاریخ ریاضیات کشور ما ناشناخته است در اثری تحت عنوان « رساله فی طریق المسایل العددیه » روشهای بکر و بدیعی به کار برده که در ارتباط با سایر متون تاریخی و هم عصر او در اروپا می توان به میزان نبوغ او پی برد .

    ج)  چهارضلعی خیام ، که زوایای مجاور قاعده 90 درجه و اضلاع قائم آن برابرند به چهارضلعی ساکی بری معروف شده است . خیام این چهارضلعی را به خاطر اثبات اصل توازی اقلیدس حداقل پانصد سال قبل از ساکی بکار برده است . به دنبال وی 150 سال بعد خواجه نصیر طوسی نیز همان چهارضلعی را برای اثبات اصل توازی به کار می برد .

     5 قرن بعد که کارهای ریاضی دانان درباره ی اصل توازی توسط جان والیس و دیگران به دست دانشمندان اروپایی می رسد ساکی بری ، لامبرت و لباچفسکی کارهای دانشمندان مسلمان را دنبال نموده و همین چهارضلعی را مورد بررسی قرار داده و زمینه های تولد هندسه های نااقلیدسی فراهم می شود .

    در واقع دانشمندان مسلمان از قبیل : ابن هیثم ، ثابت ابن قره ، خیام و خواجه نصیر پیش قراولان کشف هندسه های نااقلیدسی محسوب می شوند .

    د) تاریخچه ی معادلات دیفرانسیل که مقادیر « بی نهایت کوچک» نقش مهم در آن دارند به زمانی برمی گردد که روشهای نقشه برداری برای ساختن آبراهها و آب بندها و توزیع زمین نیاز بود . در گذشته تصور می رفت که در این حرکت بابلیان ، یونانیان ، مصریان و چینیان پیشگام حرکت بوده و اروپائیان این بحث را تا قرن نوزدهم پرورانیده اند ولی خاورشناسان اروپایی با توجه به پژوهشهایی گسترده درباره ی آثار دانشمندان مسلمان بویژه کار روی آثار ابن هیثم با ابراز شگفتی ، تواناییهای ریاضی دانان اسلامی را در این زمینه والا شمرده اند .

    ه) مدل نجومی معروف خواجه نصیرالدین یا « جفت طوسی » نقش بسزایی در تاریخ نجوم داشته که منشاء مطالعات بسیاری در تجزیه و تحلیل این مدل بوده است . جفت طوسی اصطلاحی است که تاریخ نگاران جدید وضع کرده اند . این مدل از دو دایره ی مماس بر یکدیگر تشکیل یافته است به گونه ای که دایره ی کوچکتر با شعاعی نصف دایره ی بزرگتر و سرعتی دو برابر آن ، مماس و در درون آن حرکت می کند . در نتیجه هر نقطه از دایره ی کوچکتر در امتداد قطری از دایره ی بزرگتر نوسان می کند و حرکت دورانی به حرکت خطی تبدیل می گردد. در دهه های گذشته پژوهشهای قابل توجهی پیرامون « جفت طوسی » در غرب صورت گرفته است  و در برخی از آنها مسأله به شکل بسیار تخصصی و از دیدی کاملاً ریاضی بررسی شده است .

    و) ثابت ابن قره در قرن سوم دستوری برای یافتن دسته ای از عددهای متحاب بیان کرده است . (دو عدد طبیعی در صورتی متحاب نامیده می شوند که مجموع شمارنده های مثبت کوچکتر از هر عدد مساوی با دیگری باشد ) . کمال الدین فارسی در رساله ای که هدف آن اثبات درستی دستور ثابت ابن قره بوده است حالت کلی قضیه یعنی حالتی که b مساوی با یکی از شمارنده های a باشد را در نظر گرفته و در این حالت نیز دستور محاسبه ی اجزای حاصل ضرب ab را بیان و اثبات کرده است .

    (تمامی فرمول ها در فایل اصلی قابل مشاهده اشت)

    کمال الدین فارسی نخستین کسی بود که در قرن هفتم و اوایل قرن هشتم هجری دستور محاسبه ی اجزای حاصل ضرب دو عدد طبیعی را در حالت کلی بیان و ثابت کرد .

    (a,b)=1      S(ab)=S(a) b + S(b)   a + S(a)    S(b)

    ( S(a)  مجموع اجزای عدد a  است . )

  • فهرست و منابع تحقیق مقاله تاریخچه مختصر ریاضیات

    فهرست:

    ندارد.
     

    منبع:

    - سالها باید که تا .... ( جشن نامه استاد پرویز شهریاری / انتشارات فردوس )

    2-  مجله های رشد آموزش ریاضی / دفتر انتشارات کمک آموزشی

    3-  فرهنگ ریاضیات /گروه ریاضی انتشارات مدرسه / انتشارات مدرسه

    4-  چکیده مقاله های ارائه شده در کنفرانس تاریخ ریاضیات / بندرعباس 

    .

ثبت سفارش
عنوان محصول
قیمت