پایان نامه بازسازی تاریخچه تدفین رسوبات، مدل‌سازی حرارتی و مقایسه نتایج نرم افزارها در حوضه رسوبی زاگرس

تعداد صفحات: 423 فرمت فایل: pdf - word کد فایل: 10001240
سال: 1385 مقطع: مشخص نشده دسته بندی: پایان نامه زمین شناسی
قیمت قدیم:۴۸,۹۰۰ تومان
قیمت: ۴۶,۸۰۰ تومان
دانلود فایل
  • خلاصه
  • فهرست و منابع
  • خلاصه پایان نامه بازسازی تاریخچه تدفین رسوبات، مدل‌سازی حرارتی و مقایسه نتایج نرم افزارها در حوضه رسوبی زاگرس

    پایان نامه کارشناسی ارشد رشته زمین شناسی گرایش نفت (M.Sc)

    چکیده

    حوضه رسوبی زاگرس یکی ازنفت خیزترین مناطق جهان است که 12% کل مخازن نفت جهان درآن واقع شده است. ناحیه فروافتادگی دزفول دراین حوضه قراردارد که اکثرمیدان های نفت وگازایران درآن قراردارد. امروزه بررسی میزان بلوغ سنگ های منشاء نقش مهمی دراکتشاف وتوسعه میدان های نفت وگازدارد.میزان بلوغ سنگ منشاء به دما،زمان وتاریخچه تدفین رسوبات وابسته است. یکی ازروش های پیشرفته به منظورسنجش میزان بلوغ سنگ های منشاء استفاده ازمدل سازی حرارتی( ژئوشیمیایی)می باشد.دراین پایان نامه به منظوربررسی میزان بلوغ سنگ های منشاء هیدروکربنی دراین ناحیه،5 چاه نفتی به نام های
    آغاجاری - 140، بینک - 4، گچساران - 83، منصوری - 6 وپارسی - 35 انتخاب گردید وبدین منظورازسه نرم افزاربه نام های (Pars Basin Modeler(PBM، Winburyو Genexبرای بازسازی تاریخچه تدفین رسوبات و مدل سازی حرارتی استفاده گردید. با توجه به مدل سازی انجام شده دراین منطقه،سازند های کژدمی،گدوان،پابده وگورپی سنگ های منشاء دراین چاه ها می باشند. سازند های کژدمی وگدوان دراین 5 چاه وارد پنجره نفت زایی شده اند ودرصورت دارا بودن Toc مناسب،سنگ های منشاء مولد نفت هستند.سازندهای گورپی وپابده( به غیرازچاه گچساران - 83) وارد پنجره نفت زایی شده اند ولی ازآنجا که بلوغ کمی دارند وازلحاظ ماده آلی نیزغنی نیستند،توان هیدروکربن زایی کمی دارند.

    میزان بلوغ به دست آمده ازنرم افزارها برای سنگ های منشاء یکسان است ولی زمان وعمق ورود به پنجره نفت وگاززایی درنرم افزارها متفاوت است که میتوان به دلایل ذیل اشاره نمود:

    1) نحوه محاسبات انجام شده توسط نرم افزارها       

     2) نوع لیتولوژی به کاررفته درنرم افزارWinbury

    3) به کاررفتن معادله ها وفرمول های مختلف درنرم افزارها

    4) استفاده ازمعادله فشردگی متفاوت درنرم افزارGenex نسبت به نرم افزارPars Basin Modeler

    5) متفاوت بودن نحوه ورود داده های چینه ای درنرم افزارWinbury

    6) تفاوت عمق به دلیل میزان فرسایش ودرنتیجه تغییرعمق سازند ها

    7) نحوه انطباق خط رگرسیون مدل سازی با داده های %Ro درسه نرم افزار

    با استناد به گزارش های زمین شناسی وژئوشیمیایی(Bordenave & Burwood,1990, 2003) ،  محاسبه TTI دستی وتطبیق آن با مدل به دست آمده ازنرم افزارPBM ، استفاده ازآخرین پیشرفت ها ی نرم افزارهای مدل سازی درطراحی نرم افزارPBM واطلاع از نحوه محاسبات ونتایج حاصله دراین نرم افزار ، نرم افزارPars Basin Modeler بهترین مدل رانسبت به دونرم افزار دیگردراین مطالعه ارائه داده است.

     

    مقدمه

    1)کاربرد ژئوشیمی آلی در اکتشاف منابع هیدروکربوری

    علم ژئوشیمی آلی یکی از علوم مهم در اکتشاف منابع هیدروکربوری است. منشاء این علم به اواخر قرن 19 و اوایل قرن 20 برمی‌گردد. یک اجماع عمومی وجود دارد که ژئوشیمی آلی به عنوان یک زمینه علمی در دهه 1930 با اولین مطالعه مدرن ژئوشیمی مولکول‌های آلی به وسیله آلفرد تریبز(Teriebs) شروع شد. وی توانست با کشف ماده پورفیرین در نفت خام و مقایسه آن با کلروفیل امکان اشتقاق نفت خام از کلروفیل گیاهان را ثابت کند. در سال‌های بعد، زمین‌شناسان و ژئوشیمیست‌ها درباره محتوای مواد آلی رسوبات در بستر دریاهای کنونی و در رسوبات قدیمی تحقیقات وسیعی را شروع کردند و با مقایسه این نتایج با ترکیبات شیمیایی بافت گیاهان و جانوران از یک سو و ترکیبات شیمیایی نفت خام از سوی دیگر توانستند ثابت کنند که نفت و گاز منشاء آلی دارند.

    به پاس خدمات ارزنده آلفرد تریبز (Teriebs)، وی به عنوان پدر علم ژئوشیمی آلی معرفی شد.

    به طور کلی ژئوشیمی آلی کاربرد اصول شیمی برای مطالعه منشاء، مهاجرت، تجمع و دگرسانی نفت در زیر زمین و کاربرد این دانش در اکتشاف نفت و گاز است.

    2- دو نظریه درباره ژئوشیمی آلی وجود دارد : نظریه قدیم که بیان می‌کند تعیین پتانسیل واقعی نفت فقط از طریق اطلاعات پایه‌ای زمین‌شناسی شامل تاریخچه حوضه‌ رسوبی همراه با اطلاعات ژئوشیمی ماده آلی به ویژه کروژن میسر است (1974) Hichon. و نظریه جدید که بیان می‌کند وظیفه اصلی ژئوشیمی نفت، قبل از هرگونه حفاری، پیش‌بینی مقدار حجمی و ترکیب هیدروکربور موجود در یک نمود اکتشافی است (1988)Mackenize and auighe  یکی از کاربردهای ژئوشیمی آلی در اکتشاف نفت، کاهش ریسک و هزینه‌های اکتشافی است تا در هر اقدام اکتشافی «توجیه اقتصادی» وجود داشته باشد. برای مثال در طی 5 سال، بین سال‌های 1969 تا 1973 در امریکا 25562 حلقه چاه اکتشافی حفر گردید که فقط حفر 572 چاه منجر به شناسایی میادین جدید گردید.

    از دیگر کاربردهای ژئوشیمی آلی در اکتشاف منابع هیدروکربوری می‌توان به موارد ذیل اشاره نمود :

    1) با انجام مطالعات بر روی آن دسته از سنگ‌های رسوبی که از پتانسیل سنگ منشاء بالایی برخوردار هستند می‌توان مشخص کرد که آیا سازند مورد نظر به تولید نفت و گاز رسیده است یا خیر؟

    2) در صورت مثبت بودن جواب، میزان نفت و گاز تولید شده چه میزان است؟ آیا این مقدار اقتصادی و مقرون به صرفه است یا خیر؟ و آیا مقدار محاسبه شده با محاسبات مهندسی نفت و زمین‌شناسی مطابقت دارد یا خیر؟

    3) سنگ منشاء نفت در چه محیطی تشکیل شده است (دریایی، دریاچه‌ای، دلتایی و یا خشکی)؟ آیا می‌توان پیدایش چنین محیط‌هایی را پیش بینی نمود؟ در تشخیص محیط رسوبی سنگ منشاء، بیومارکرها (فسیل‌های ژئوشیمیایی) مفید هستند.

    4) چه نوع کروژنی تبدیل به نفت و یا گاز می‌شود؟

    5) باتوجه به ویژگی‌های مواد آلی موجود در سنگ منشاء با ترکیبات آلی و نفت و یا گاز همان ناحیه‌ می‌توان نفت یک مخزن را با نفت مخزن در یک ناحیه دیگر انطباق داد  دو مشخص کرد که آیا سنگ منشاء این دو مخزن یکی بوده است یا خیر؟ این تطابق‌ها را در ژئوشیمی آلی، «تطابق با نفت» و یا «تطابق سنگ منشاء با نفت» می نامند. برای تطابق از بیومارکرها و همچنین ایزوتوپ کربن استفاده می‌شود ولی در مورد گازها، همیشه باید از «روش‌ ایزوتوپ کربن» استفاده کرد.

    6) چه عواملی بر روی وزن مخصوص و ترکیب نفت تاثیر می‌گذارند؟

    7) تشکیل هیدروکربور درچه شرایط گرمایی صورت می‌گیرد؟ آیا می‌توان پیش‌بینی کرد که در چه زمان و در کجا هیدروکربن تولید شده است؟

    8) ژئوشیمی آلی می‌تواند دگرگونی یا آنومالی‌‌های ساختاری زمین‌شناسی از قبیل گسل‌ها، دگرشیبی‌ها، ناهمگنی‌ لایه‌ها و حتی نفوذ توده‌های مذاب و آتشفشانی را نشان دهد.

    9) کاربرد دیگری که ژئوشیمی آلی دارد، مطالعه و بررسی مخازن کشف شده است که از آنها نفت و گاز استخراج می‌شود. نفت درون مخزن ممکن است مورد «تخریب میکروبی»، «آبشویی» و «اکسیداسیون» قرار گیرد.

    بنابراین ژئوشیمی آلی می‌تواند عوامل تخریب کننده فوق‌الذکر را تشخیص داده و در مورد روند کاهش اثرات تخریب، نظر دهد.

    10) تشخیص «ماهیت یا کیفیت سنگ منشاء» (کیفیت کروژن‌ سنگ‌ منشاء).

    کروژن طی 3 مرحله، نابالغ، بالغ و فوق‌بالغ تحول می‌یابد که بستگی به دما و عمق سنگ منشاء درزیرزمین دارد بنابراین یک کروژن می‌تواند از حالت بالقوه به حالت بالفعل تحول یابد تا  توانایی تولید نفت و یا گاز را داشته باشد.

    11) تشخیص یا پیش‌بینی نوع هیدرو کربن باتوجه به نوع کروژن و محیط‌ رسوبی.

    12) تعیین درجه بلوغ سنگ منشاء و همچنین تعیین شیب زمین گرمایی ناحیه مورد نظر.

    13) در کدام دوره‌های زمین شناسی، چه سازند و یا لایه‌ای به سنگ منشاء تبدیل شده است؟ دما و عمق در آن زمان چگونه بوده است؟ و روند وقایع سنگ منشاء از تشکیل تا عهد حاضر چگونه بوده است و این که آیا این سنگ منشاء به حالت «بالفعل» رسیده است و توانایی تولید نفت و یا گاز را دارد یا خیر؟

    14) آیا هنگام تولید و مهاجرت هیدروکربن ساختمان مناسب جهت حفظ و نگهداری نفت مهیا بوده است یا خیر؟

    برای تجمع اقتصادی نفت در زیر زمین وجود عوامل ذیل ضروری است:

    الف) تشکیل سنگ منشاء با پتانسیل بالا

    ب) رسیدن به درجه بلوغ با افزایش دما و عمق

    پ) وجود سنگ مخزن در بالای سنگ منشاء

    ت) وجود پوشش سنگ

    ث) ایجاد تله نفتی یا گازی به وسیله عوامل زمین‌شناسی

    ج) امکان مهاجرت نفت و گاز از سنگ منشاء به سنگ مخزن (مهاجرت اولیه) و از سنگ مخزن به تله نفتی (مهاجرت ثانویه)

    سوالات مطرح شده در بالا به وسیله علم ژئوشیمی آلی پاسخ داده می‌شود و این حاکی از نقش مهم و انکارناپذیر ژئوشیمی آلی در اکتشاف منابع هیدروکربوری و بهبود اهداف اکتشافی در حوضه‌های رسوبی است.

     

    2)اهداف پروژه

    مدل سازی ژئوشیمیایی امروزه برای بررسی غیر مستقیم بلوغ سنگ منشاء نفت به کار می‌رود تا بتوان عمق و دمای زایش نفت و گاز را پیش‌بینی کرده و ریسک اکتشافی چا‌ه‌های نفت و گاز را کاهش داد.

    هدف از این پایان‌نامه، بازسازی تاریخچه تدفین رسوبات به منظور تعیین حوادث زمین‌شناسی (بالا آمدگی، فرو رانش، نبود چینه‌ای و...) مدل‌سازی ژئوشیمیایی چاه‌های نفتی به منظور تعیین درجه بلوغ سنگ منشاء و در نتیجه تعیین پنجره‌های نفت و گاززایی با در نظر گرفتن 2 عامل  موثر دما و زمان و در نهایت مقایسه نتایج نرم‌افزارها به منظور تعیین بهترین مدل در حوضه رسوبی زاگرس می باشد.

    بدین منظور 6 چاه نفتی از ناحیه فروافتادگی دزفول در حوضه رسوبی زاگرس انتخاب گردید و برای نیل به اهداف مورد نظر 3 نرم‌افزار Winbury, Pars Basi modeler و Genex برای مدل سازی به کار رفت. به طوریکه نرم‌افزار PBM برای اولین بار در ایران در یک رساله کارشناسی ارشد استفاده شده است زیرا این نرم‌افزار ایرانی اخیراً توسط پژوهشگاه صنعت نفت در سال 1385 طراحی شده است .برای بررسی میزان بلوغ سنگ‌های منشاء از 2 دو روش اندیس زمان – حرارت (TTI) و همچنین روش Ro% استفاده شده است.(داده‌های Ro% با اندازه‌گیری از نمونه‌های چاه‌های نفتی به دست آمده است).  مدل سازی حرارتی و بازسازی تاریخچه تدفین رسوبات در حوضه خیلیج‌فارس انجام شده است اما در حوضه رسوبی زاگرس این روش برای مطالعه میزان بلوغ سنگ منشاء و تعیین نوع هیدروکربن (نفت و یا گاز) کمتر انجام شده است.

    بدین منظور هدف این پایان‌نامه در مطالعه سنگ‌های منشاء ناحیه مورد نظر به منظور تعیین پنچره‌های نفت و گاززایی و تعیین عمق و دمایی که سنگ منشاء توانسته است هیدرو کربن تولید نماید بوده است تا بدین طریق بتوان بررسی میزان بلوغ سنگ منشاء را در این حوضه بسط داد و برای اهداف اکتشافی و توسعه‌ای چاه‌های نفت و گاز بهتر تصمیم‌گیری نمود.

    در فصل‌های آتی به جزییات بیشتر مدل‌سازی ژئوشیمیایی با استفاده از نرم‌افزار‌ها و تعیین سنگ‌های منشاء و عمق و زمان پنجره‌های نفت و گاز‌زایی در منطقه مورد مطالعه اشاره خواهد شد.

  • فهرست و منابع پایان نامه بازسازی تاریخچه تدفین رسوبات، مدل‌سازی حرارتی و مقایسه نتایج نرم افزارها در حوضه رسوبی زاگرس

    فهرست:

    ندارد.
     

    منبع:

    منابع فارسی:

     

    1) آقانباتی،سید علی،زمین شناسی ایران،1383،سازمان زمین شناسی واکتشافات معدنی کشور

    2) اشکان،سید علی محمد،1383،اصول مطالعات ژئوشیمیایی،سنگ های منشاءهیدروکربوری ونفت ها،شرکت ملی نفت ایران

    3) رضایی،محمد رضا،1380،زمین شناسی نفت،علوی

    4) کسایی،محمد،1384،مدل سازی حرارتی،شاخص های بلوغ،تشکیل هیدروکربوروشکسته شدن مولکول های نفت(ترجمه)،پژوهشگاه صنعت نفت 

    5) کمالی،محمد رضا،1378،کاربرد ژئوشیمی آلی دراکتشاف نفت،پژوهشگاه صنعت نفت

    6) مطیعی،همایون،1382،چینه شناسی زاگرس،سازمان زمین شناسی واکتشافات معدنی کشور

    7) مطیعی،همایون،1374،زمین شناسی نفت زاگرس،سازمان زمین شناسی واکتشافات معدنی کشور

     

     

    منابع خارجی:

     

    1) Bordenave, R. & Burwood, M.L, 1990, Source rock distribution and maturation in zagros belt: province asmari and bangestan reservoir oil accumulation, Bull A.A.P.G, No 16, P.369-386

     

    2) Bostick, N.H, 1979, Microscopic measurement of the level of catagenesis of solid organic matter in sedimentary rocks to aid exploration for petroleum and determine former burial temperatures, SEPM special publication 26, P.17-43

     

    3) Cosgrove, J.W, 2003, Structureal framework of the zagros fold-thrust belt in Iran, Journal of marine and petroleum geology, P.829-843

     

    4) Ghori, K.A.R, 2002, Modeling the hydrocarbon generative history of the officer basin, Western Australia, PESA, journal, NO.29, P.29-41

     

    5) Hunt, John, 1995, Petroleum geochemistry and geology book, how oil forms: generated hydrocarbons part, P.112-137

     

    6) Hunt, John, 1995, Petroleum geochemistry and geology book, the source rock part, P.322-330 & 358-370

     

    7) Hunt, John, 1995, Petroleum geochemistry and geology book, prospect evaluation part, P.620-624

     

    8) Hunt, Johnm, 1995, Petroleum geochemistry and geology book, modeling petroleum generation part, P.141-161

     

    9) Klemme, H.D and Ulmishek, G.F, 1999, Effective petroleum source rock source rock of the world: stratigraphuc distribution and controlling deposional factors, A.A.P.G bulletin, Volume 75, P.1809-1812

     

    10) Kvenvolden, Keith A., 2001, History of the recognition of organic geochemistry in geoscience, Organic geochemistry, No.33, P.517-521

     

    11) Lopatin, N.V, 1976, the determination of the influence of temperature and geologic time on the catagenic processes of coalification and oil-gas generation, Akademia nauk SSSR, P.361-366

     

    12) Lopatin, N.V, 1971, Temperature and geological time as factors of carbonification, Geol.3, P.95-106

     

    13) Waples, D.w, 1994, Maturity modeling: thermal indicators, hydrocarbon generation and oil cracking, A.A.P.G journal, Volume 62 P.285-306

     

    14) Waples, D.w, 1980, Time and temperature in petroleum formation: application of lopatin´s method to petroleum exploration, A.A.P.G journal, Volume 64, P.916-926

     

    15) Wood, D.V, 1988, Relationships between thermal maturities indicates: calculated usind Arrhenius equation and lopatin method, A.A Waples, D.w, 1994.P.G bulletin, Volume 72, P.115-134

     

    16) Wood, D.V, 1990Thermal maturation modeling using spreadsheets, Geobyte V.5, P.56-61

    .

ثبت سفارش
عنوان محصول
قیمت