فهرست و منابع پایان نامه تحلیل پارامتریک رفتار لرزه ای عوارض توپوگرافی مثلثی شکل در فضای زمان
فهرست:
- مقدمه.................................................................................................................................................... 1
2- تاریخچه تحقیقات و مطالعات انجام شده................................................................................................ 4
2-1-شواهد تجربی ومطالعات درخصوص اثرات ساختگاه تیز گوشه و مثلثی شکل بر پاسخ زمین.........4
2-2- مطالعات نظری و تحلیلهای عددی عارضه مثلثی شکل............................................. .................19
2-3- مطالعات انجام شده در رابطه با تحلیلهای پارامتریک عوارض تیزگوشه و مثلثی شکل................ 26
3- پدیده انتشار امواج دو بعدی و حل عددی معادلات آن . ...........................................................37
3-1- مقدمه ................................................................................................................................37
3-2- انواع مختلف ناهمواریها ....................................................................................................38
3-3- علل تقویت امواج لرزه ای ........................................................................................ .......04
3-3-1- اثر سطحی( Surface Effect) ................................................................... ........04
3-3-2- اثر کانونی شدن (Focusing Effect ) ...............................................................42
3- 3 -3- اثر گهواره ای (Rocking Effect ) ............................................................ .....44
3-3-4 - اثر عبور پراکنش موج (Scattering & Passage effect).................... ........54
3-4- معادلات انتشار امواج الاستیک .........................................................................................45
3-5- حل عددی معادله انتشار امواج ............................................................................ ............49
3-6- روش عددی مورد استفاده و دامنه مطالعات پارامتریک ....................................................54
3-7- تعیین ابعاد المان در روش اجزای مرزی ....................................................... ...................56
3-8- معرفی نرم افزار Hybrid .............................................................................................59
3-8-1- مقدمه ............................................................................................................ ...........59
3-8-2- بررسی اعتبار و دقت نرم افزار Hybrid ....................................................................61
3-8- 2-1- حرکت میدان آزاد نیم فضا ..................................................................................61
3-8-2-2- دره خالی با مقطع نیم دایره ....................................................................................62
3-8-2-3- دره آبرفتی با مقطع نیم دایره ..................................................................................62
3-8-2-4- تپه با مقطع نیم سینوسی .........................................................................................62
3-8-2-5- تپه با مقطع نیم دایره ...............................................................................................63
4-ااف-رفتار لرزه ائی تپه های مثلثی شکل......................................... ..............................................64
4-1- مقدمه ............................................................................................................................64
4-2- متدلوژی مطالعات ........................................................................................... ..............65
4-3- اعتبار سنجی مدل..................................................... ......................................................67
4-3-1- ابعاد مش بندی......................................................... ............ ................................68
4-3-2- طول گام زمانی............ ......................................................... ............ ............... ...68
4 -4- تاریخچه زمانی دامنه مولفههای افقی و قائم تغییر مکان برای کل محدوده..... ...... ... ....69
4-5- تفرق امواج در حوزه زمان ( تفسیر نمودار های تاریخچه زمانی ) ......................... . 69
4-6- بزرگنمایی تپه در فضای فرکانسی ......................................................... ............ .............71
4-6-1 تفسیر کلی نمودارهای بزرگنمایی .................................................... ............ ..........71
4-6-2 بزرگنمایی راس تپه................... .................................................... ............ ..........72 4-7-تغییرات بزرگنمائی بر روی یال تپه .................................................... ........... .. . ............73
4-8-ضریب تقویت عوارض تپه ای مثلثی شکل.................................................... ..................75
4-ب-رفتار لرزه ائی دره های مثلثی شکل......................................... ............................ ................104
4-9- متدلوژی مطالعات ...................................................... ..................................................104
4-10- اعتبار سنجی مدل..................................................... ...................................... ..........105
4-10-1- ابعاد مش بندی................................................................................................105
4-10-2- طول گام زمانی............ ......................................................... ....................... .106
4 -11- تاریخچه زمانی دامنه مولفههای افقی و قائم تغییر مکان برای کل محدوده.......... . ...106
4-12 تفرق امواج در حوزه زمان ( تفسیر نمودار های تاریخچه زمانی ) ......................... 106
4-13- بزرگنمایی دره در فضای فرکانسی ..........................................................................108
4-13-1 تفسیر کلی نمودارهای بزرگنمایی........ ........................................ .............108
4-13-2 بزرگنمایی قعردره..........................................................................................110 4-14-تغییرات بزرگنمائی بر روی یال دره .............................................. .......... . .........111
4-15-ضریب تضعیف عوارض دره ای مثلثی شکل............... ..........................................112
5 - جمعبندی و نتیجهگیری ..... ............................................... ................................... .. 141
5-1- نتایج مطالعه پاسخ تپه ها در حوزه زمان 141
5-2- نتایج مطالعه پاسخ تپه ها در حوزه فرکانس 141
5-3- نتایج مطالعه پاسخ دره ها در حوزه زمان 141
5-4- نتایج مطالعه پاسخ دره ها در حوزه فرکانس 142
5-5-زمینه های پیشنهادی برای ادامه این تحقیق 142
مراجع ..............................................................................................................................143
.
منبع:
1- Akamatu, K., 1961, “On microseisms in frequency range 1 c/s to 200 c/s .Bulletin of Earthquake Research Institue, Tokyo University, No. 39, pp. 23-76.
2- Aki, K., 1957, “ Space and time specrta of stationary stochastic waves, with special reference to microtremors”, Bulletin of Earthquake Research Institute, No. 35, pp. 415-456.
3- Aki, K. & K. Larner, 1970. Surface motion of a layered medium having an irregular interface due to the incident plane SH waves. Jour. of Geoph. Res., 75.
4- Aki, K. and P.G. Richards, 1980.Quntitative seismology: theory and methods. W.H. freeman and Co., San Fransisco, California, USA.
5- Aki, K., 1984. Short period seismology. J. Comp. Phys., 54.
6- Allam, A., 1969, “An investigation in to the nature of mictotremors.”, Ph. D. Thesis, Tokyo University
7- Alterman, Z. S. & F. C. Karal, 1968. Propagation of elastic waves in layered media by finite difference methods. Bull. Seism. Soc. Am., 58.
8- Ansary, M.A. et al., 1996, “ Application of microtremor measurements to the estimaton of site amplificaltion chararcteristics”, Bull. ERS., 29.
9- Ashford, S.A. and N. Sitar, 1994. Seismic response of steep natural slopes. Report No. UCB/EERC 94-05.
10- Ashford, S.A. and N. Sitar, 1997. Analysis of topographic amplification of inclined shear waves in a steep coastal bluff. Bull. Seism. Soc. Am., 87.
11- Ashford, S.A., N. Sitar, J. Lysmer and N. Deng, 1997. Topographic effects on the seismic response of steep slopes. Bull. Seism. Soc. Am., 87.
B
12- Banerjee, P.K. and R. Butterfield, 1977. Boundary element methods in geomechanics. In: Finite elements in geomechanics, John Wiley, London
13- Bard, P. –Y & M. Bouchon, 1980a. The seismic response of sediment – filled valleys. Part I. The case of incident SH waves. Bull. Seism. Soc. Am., 70.
14- Bard, P. –Y & M. Bouchon, 1980b. The seismic response of sediment – filled valleys. Part II. The case of incident P and SV waves. Bull. Seism. Soc. Am., 70.
15- Bard, P.-Y., 1982. Diffracted waves and displacement field over two-dimensional elevated topographies. Geophys. J. R. Astr. Soc. 71
16- Bard, P.-Y., M. Bouchon, 1985. The two dimensional resonance of sediment filled valleys. Bull. Seism. Soc. Am., 75
17- Bard, P.-Y. and J.-P Meneroud, 1987. Modifaction du signal sismique par la topographie. Cas de la vallee de la Roya(Alpes-Maritimes). Bull. Liaison Laboratoires des Ponts-et-Chaussees, numero special "Risques Naturels" 150-151(in French).
18- Bard, P.-Y., 1994. Discussion seission : lessons, issues, needs and prospects, special theme seission on Turkey falt and Ashigara valley experiments. In : Proc. of 10th WCEE, post conference volume.
19- Bard, P. Y., 1998, “Microtremor measurements: a tool for site effect estimation?” , Proc. Second Int. Sym. on the effect of surface geology on seismic motion, Japan
20- Bard, P.-Y. and R. Thomas, 2000. Wave propagation in complex geological structures and their effects on strong ground motion. In: Wave motion in earthquake engineering, E. Kausel and G. Manolis(eds.).
21- Barlow, N., 1933. Charles Daewin's Diary of the Voyage of H.M.S. Beagle. Cambridge University Press, New York.
22- Beskos, D.E. and C.C. Spyrakos, 1984. Dynamic response of strip foundations by the time domain BEM-FEM method. Dept. of Civil &Mineral Eng.,University of Minnesota, Minneapolis, USA
23- Boore, D.M., 1972. A note on the effect of simple topography on seismic waves. Bull. Seism. Soc. Am., 62.
24- Bouchon, M., 1973. Effect of topography on surface motion. Bull. Seism. Soc. Am.,63
25- Bouchon, M., 1985. A simple complete numerical solution to the problem of diffraction of SH waves by an irregular surface. Journal of Acous. Soc. of Am., 77
26- Bouchon, M., C.A. Scultz and M.N. Toksoz, 1995a. Effect of 3-D topography on seismic motion. Journal of Geophysical Researchs, 101.
27- Bouchon, M. et al., 1995b. A fast implementation of boundary integral equation methods to calculate the propagation of seismic waves in laterally varying layered media. Bull. Seism. Soc. Am., 85.
28- Bouchon, M. and J.S. Barker, 1996. Seismic response of a hill: the example of Tarzana, California. Bull. Seism. Soc. Am., 86.
29- Brambati, A., E. Faccioli, E.B. Carulli, F. Culchi, R. Onofri, S. Stefani and F. Ulcigrai, 1980. Studio microzonizzazione sismica dell'area di Tarcenato(Friuli), Edito da Regiona Autonoma Friuli-Venezia-Giulia 9in Italian).
30- Brebbia, C.A., 1978. The boundary element method for engineers. Pentech Press, London.
C
31- Campillo, M. et al., 1993. The incident wavefield in Mexicocity during the great Michoacan earthquake and its interaction with the deep basin. Earthquake Spectra, 4.
32- Cao, H. & V.W. Lee, 1990. Scattering and diffraction of plane P waves by circular cylindrical canyons with variable depth – to – width ratio. Soil Dyn. and Earth. Eng., 9.
33- Celebi, M. 1987. Topographical and geological amplifications determined from strong motion and aftershock records of the 3 March 1985 Chile earthquake, Bull. Seism. Soc. Am. 77.
34- Celebi, M., 1991. Topographic and geological amplification : case studies and engineering implications. Structural Safety, 10
35- Celebi, M. 1995. Northridge (California) earthquake: Unique ground motions and resulting spectral and site effects. In: Proceeding of the 5th Inter. Conf. on Seism. Zonation, Nice, France
36- Chavez-Garcia, F.J., L.R. Sanchez and D. Hatzfeld, 1996. Topographic site effects and HVSR. A comparison between observations and theory. Bull. Seism. Soc. Am., 86.
37- Chavez-Garcia, F.J. and E. Faccioli, 2000. Complex site effects and building codes:Making the leap. Journal of Seismology, 4.
38- Coutel, F. and Mora, P., 1998, “ Simulation- Based comparison of four site- response estimation techniques”, BSSA, Vol. 88, pp.30-42.
D
39- Davis, L.L. & L.R. West, 1973. Obsreved effects of topography on ground motion. Bull. Seism. Soc. Am., 63.
40- Deng, N., 1991. Two-dimensional site response analysis. Ph.D. Thesis, University of California at Berkeley.
41- Dineva, P.S. & G.D. Manolis, 2001. Scattering of seismic waves by cracks in multi-layered geological regions II. Numerical model. Soil Dyn. and Earth. Eng., 21
42- Douze, E.j., 1964. “Signal and noise in deep wells”, Geophysics, Vol. 29, pp. 721-732.
43- Dravinski, M., 1983. Scattering of plane harmonic SH wave by dipping layers of arbitrary shape. Bull. Seism. Soc. Am., 73.
44- Dravinski M. & Mossessian T. k.; 1987; "Scattering of plane harmonic P, SV, and Reyleigh waves by dipping layers of arbitrary shape"; Bull. Seismol. Soc. Am.; 77, PP. 212 – 235
45- Dravinski, M. & M.S. Wilson, 2001. Scattering of elastic waves by a general anisotropic basin. Part 1: a 2D model. Earth. Eng. and Struc. Dyn., 30.
E
46- England, R. et al., 1980. Scattering of SH waves by surface cavities of arbitrary shape using boundary methods. Physics of the Earth and Planetary Interiors, 21.
47- Enomoto, T. et al., 1998, “Zonation on amplification factor in irregular boundary soil condition using seismic motion record”, Proc of 11 ECEE, France.
48- Enomoto, T. et al., 2000, “Study on microtremor characteristics based on simulataneous measurements between basement and surface using borehole”, Proc. of 12 WCEE
49- Eshraghi, H. & M. Dravinski, 1989. Scattering of plane harmonic SH, SV, P and Rayleigh waves by non – axisymetric three – dimensional canyons : a wave function expansion approach. Earth. Eng. and Struc. Dyn., 18.
50- Eurocode8(EC8),1998 . Design provisions for earthquake resistance of structures,
F
51-Faccioli, E., 1991. Seismic amplification in the presence of geologic and topographic irregularities. In: Proceeding of the 2nd Inter. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis(USA), .
52- Faccioli, E. et al., 1996. A spectral element decomposition methods for the solution of acoustic and elastic wave equations. Geophysics.
53-Faccioli, E., M. Vanini, L. Frassine, 2002, Complex site effects in earthquake ground motion, including topography. In: Proceeding 12th European Conference of Earthquake Engineering.
54- Fah, D. et al., 1992. Variability of seismic ground motion in complex media: the case of a sedimantary basin in the Friuly(Italy) area. J. Appl. Geophs., 9
55- Fah, D. et al., 1993. A new method for the realistic estimation of seismic ground motion in megacities: the case of Rome. Eartquake Spaectra, 9.
56- Finn, W. and D. Liam, 1991. Geotechnical engineering aspects of seismic microzonation. In: Proceeding of the 4th Inter. Conf. on Seism. Zonation, Stanford, California(USA).
57- Field, E. H. et al., 1990, “Using microtremors to assess potential earthquke site response: A case study in Flushing Meadows, New York City”, BSSA, Vol. 80, pp.1456-1480.
58- Field, E.H. and Jacob, K., 1993, “The theoretical response of sedimantary layers to ambient seismic noise”, Geophysical Research Letters, 20, pp. 2925-2928.
59- Franz, W., 1954. Uber die Greenshen Funktionen des Zylinders und der Kugel, Z. Naturforsch, 9a(in German).
60- Furumura, T. & H. Takenaka, 1996. 2.5-D modelling of elastic waves using the pseudospectral method. Geophys. J. Int., 124.
61- Fuyuki, M. and Y. Matsumoto, 1980. Finite difference analysis of Rayleigh wave scattering at a trench. Bull. Seism. Soc. Am.,70.
G
62-Gaffet, S. & M. Bouchon, 1989. Effect of two-dimensional topographies using the discrete wavenumber-boundary integral equation method in P-SV cases. Journal of Acous. Soc. of Am., 85.
63- Gatmiri, B. and M. Kamalian, 2002a . Time domain two-dimensional hybrid FEM/BEM dynamic analysis of non-linear saturated porous media. In : Proceeding 2nd Canadian Specialty Conference on Computing in Geotechnique.
64-Gatmiri, B. and M. Kamalian, 2002b . Combination of boundary element and finite element methods for evaluation of dynamic response of saturated porous media. In : Proceeding of 5th European Conference on Numerical Methods in Geotechnical Engineering.
65-Geli, L., P.-V. Bard, B. Julien, 1988. The effect of topography on earthquake ground motion: a review and new results. Bull. Seism. Soc. Am., 78.
66- Gilbert, F. & L. Knopoff, 1960. Seismic scattering from topographic irregularities. Jour. of Geoph. Res., 65.
66-2 – Goodman, R.E. and H.B. Seed, 1966. Earthquake induced displacements in sand embankments. J. Soil Mech. And found. Div, ASCE, 92(SM2).
67- Griffith, D. & A. Bollinger, 1979. The effect of Appalachian mountain topography on seismic waves. Bull. Seism. Soc. Am., 69.
H
68- Herrera, I. and F.J. Sabina, 1978. Connectivity as an alternative to boundary integral equations. Construction of bases. In: Proceeding Nat’l. Acad. Sci.,USA
69- Herrera, I., 1984. Boundary methods: an algebric theory
70- Hudson, J.A., 1967. Scattered surface waves from a surface obstacle. Geophysics Journal, 13.
I
71- Idriss, I.M. and H.B. Seed, 1967. Response of earthbanks during eartquakes. J. Soil Mech. Found. Div. ASCE, 93(SM3).
72- Idriss, I.M., 1968. Finite element analysis for the seismic response of earth banks. J. Soil Mech. Found. Div. ASCE, 94(SM3)
73- Israil, A. S. M. & Banerjee, P. K.; 1990a; "Advanced time domain formulation of BEM for two-dimensional transient elastodynamics"; Int. J. for Num. Methods in Eng., Vol. 29, pp. 1421-1440
74- Israil, A. S. M. & Banerjee, P. K.; 1990b; "Two- dimensional transient wave propagation by time domain BEM"; Int. J. Solids Structures; 26; pp. 851-864
J
75- Jafari, M.K., A. Shafiee and A. Razmkhah, 2002. Dynamic properties of fine grained soils in south of Tehran. Journal of Seismology and Earthquake Engineering (JSEE), Vol. 4, No. 1.
76- Jibson, R., 1987. Summary of research on the effects of topographic amplificationof earthquake shaking on slope stability. Open-File report 87-268, U.S.G.S.
77- Jongmans, D., M. Campillo, 1993. The response of the Ubaye valley (France) for incident SH and SV waves: comparison between measurements and modeling. Bull. Seism. Soc. Am. , 83.
78- JSCE Eartquake Reports, 2001. Recent damaging earthquakes around the world. Japan Society of Civil Engineers, Japan.
K
79- Kamalian, M., 2001. Time domain two-dimensional hybrid FEM/BEM dynamic analysis of non-linear saturated porous media. Ph. D. Dissertion, Tehran University.
80- Kamalian , M., M.K. Jafari, A. Sohrabi, K. Dehghan and A. Razmkhah, 2003a. Transient two-dimensional hybrid FEM/BEM response analysis of surface topographies, Accepted for BEM 25-2003.
81- Kamalian , M., M.K. Jafari, K. Dehghan, A. Sohrabi and A. Razmkhah, 2003b . Two –dimensional hybrid response analysis of trapezoidal shaped hills in time domain. Advances in Boundary Element Techniques, R. Gallego& M.H. Aliabadi(eds), 231-236.
82- Kamalian, M. et al., 2003c. On time domain two-dimensional site response analysis of topographic structures by BEM. JSEE.
83- Kanai, K. and Tanaka, T., 1961, “On microtremors VIII”, Bulletin of Earthquake Research Institute., University of Tokyo, Vol. 39, pp. 79-114
84- Kawase, H., 1988. Time-domain response of a semicircular canyon for incident SV, P and Rayleigh waves calculated by the discrete wavenumber boundary element method. Bull. Seism. Soc. Am., 78.
85- Kawase, H., 1990. Effects of topography and subsurface irregularities on strong ground motion, Doctoral Thesis, Kyoto University, Kyoto, Japan.
86- Kawase, H., and K. Aki, 1990. Topography effect at the critical SV wave incidence: possible explanation of damage pattern by the Whittier-Narrows, California, earthquake of 1 October 1987. Bull. Seism. Soc. Am., 80.
87- Kim, J. & A. S. Papageorgiou, 1993. Discrete wavenumber boundary-element method for 3-D scattering problems. Jour. of Eng. Mech., 119
88- Kim, J. and A.S. Papageorgiou, 1991. Application of the boundary element discrete wavenumber method in the study of diffraction of elastic waves by 3-D surface irregularities. Journal of Eng. Mec. Div., ASCE
89- Klimis, N.S. and A.J. Anastasiadis, 2002. Comparative evaluation of topography effects via code recommendations and 2-D numerical analysis. In: Proceeding 12th European Conference of Earthquake Engineering
90- Kobayashi, S. et al., 1986. Applications of boudary element-finite element combined method to three-dimensional viscoelastic problems. Boundary Elements, Pergamon Press, Oxford.
91- Kohketsu, K. and H. Takenaka, 1989. Review: Theories of wave propagation in near field of seismic sources. Zisin, SSJ, 42(in Japanese).
92- Kokusho, T., 1980, “Cyclic Triaxial Test of Dyamic Soil Properties for Wide Strain Range”, Soils and Foundations, 22(1), pp. 45-60.
93- Komatitsch, D. and J.-P. Vilotte, 1998. The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. . Bull. Seism. Soc. Am., 88.
94- Konno, K. and Ohmachi, T., 1996, “Ground motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor”, Bull. Seism. Soc. Am. , 86.
95- Kovacs, W.D. et al., 1971. Studies of seismic response of clay banks. J. Soil Mech. Found. Div. ASCE, 97(SM2)
96- Kuriyama, T. et al., 2000. Microzoning of seismic intensity distribution considering site effects due to irregularity of subsurface soil structures. In : Proceeding of the 12WCEE. NewZeland
L
97- Lachet, C. and Bard, P. Y., 1994, “ Numerical and theoretical investigations on the possibilities and limitations of Nakamura’s Techcique”, J. Phys. Earth., Vol. 42.
98- Lawson, A.C., 1908. California Earthquake of April 18, 1906. Publication No. 87, Report to the State Earthquake Investigation Committee, Vol. 1. Carnegie Institute of Washington, Washington D.C..
99- LeBrun, B., D. Hatzfeld and P.-Y. Bard, 1999. Experimental study of ground motion on a large scale topography. Journal of Seismology, 3
100- Lee, V.W., 1982. A note on the scattering of elastic plane waves by a hemispherical canyon. Soil Dynamics and Earthquake Engineering, 1.
101- Lermo, J. and Chavez- Garcia, F., 1992, “ Site effect evaluation using microtremors, a review”, EOS 75
102- Lermo, H. and Chavez- Garcia, F., 1993, “Site effect evaluation using spectral ratios with only one station”, BSSA, Vol. 83, pp. 1574-1594
103- Lermo, J. and Chavez- Garcia, F., 1994a, “Site effect evaluation at Mexico City: dominant period and relative amplification from strong motion and microtremor records”, Soil Dyn. and Earthquake Eng., Vol. 13. 413-423.
104- Lermo, J. & F.J. Chavez-Garcia, 1994. Are microtrmores useful in site response evaluation? . Bull. Seism. Soc. Am., 84
105- Levret, A., C. Loup and X. Goula, 1986. The Provence earthquake of June 11th , 1909(France):New assessment of near-field effects. In: Proceeding of the 8th Eight European Conference of Earthquake Engineering, Lisbon.
106- Loco, J.E. et al., 1990. Three-dimensional response of a cylindrical canyon in a layered half-space. Earthquake Engineering and Structural Dynamics, 19
107- Luco, J. E. & F. C. P. D. Barros, 1995. Three-dimensional response of a layered cylindrical valley embedded in a layered half-space. Earth. Eng. and Struc. Dyn., 24.
108- Luzon, F. et al., 1997. Diffraction of P, S and Rayleigh waves by three-dimensional topographies. Geophys. J. Int., 129.
M
109- Macdonald, H.M., 1902. Elastic waves. Cambridge University Press.
110- Manolis, G.D. and D.E. Beskos, 1988. Boundary element methods in elastodynamics. Prentice Hall
111- May, T.W., 1980. The effectiveness of trenches and scraps in reducing seismic energy. PH.D. thesis, University of California at Berkeley, California, USA.
112- Mc Ivor, I.K., 1969. Two dimensional scattering of a plane compressional wave by surface imperfections. Bull. Seism. Soc. Am., 59.
113- Moczo, P. et al., 1996. Amplification and differential motion due to an antiplane 2D response in the sediment valleys embedded in a layer over half-space. Bull. Seism. Soc. Am., 86.
114- Moczo, P., E. Bystricky, J. Kristek, J.M. Carcione and M .Bouchon,1997.Hybrid modeling of P-SV seismic motion at inhomogenous viscoelastic topographic structures. . Bull. Seism. Soc. Am., 87.
115- Mogi, H., Kawakami, H., & Ghayamghamian , M.T., 1995 , “Probability distribution of spectra and spectral ration”, Proc. of first Int. Conf. on Earth. Geot. Eng. Pp. 573-578.
116- Moeen – Vaziri, N. & M.D. Trifunac, 1988a. Scattering and diffraction of plane SH waves by two – dimensional inhomogenities : part I. Soil Dyn. and Earth. Eng., 7.
117- Moeen – Vaziri, N. & M.D. Trifunac, 1988b. Scattering and diffraction of plane P and SV waves by two – dimensional inhomogenities : part II. Soil Dyn. and Earth. Eng., 7.
118- Mossessian T. K. & Dravinski M.; 1987; "Application of a hybrid method for scattering of P, SV, and Reyleigh waves by near-surface irregularities"; Bull. Seismol. Soc. Am.; 77, 1784-1803
119- Mossesian, T.K. and M. Dravinski, 1989. Scattering of elastic waves by three-dimensional surface topographies. Wave motion, 11.
120- Mossessian, T.K. and M. Dravinski, 1992. A hybrid approach for scattering of elastic waves by three-dimensional irregularities of arbitrary shape. J. Phys. Earth, 40
N
121- Naganoh, M., H. Kagami, H. Muratami, 1993. Effects of surface and subsurface irregularities. In: Earthquake motions and ground conditions, The Architectural Institute of Japan, Tokyo.
122- Nakamura, Y., 1989, “ A method for dynmic characteristics estimation of subsurface using microtremor on the ground surface.” QR of RTRI, No. 30, pp. 25-33.
123- Nakamura, Y., 2000, “Clear identification of fundamental idea of Nakamura’s technique and its applications”, Proc. of 12 WCEE.
124- Nechtschein, S., P.-Y Bard, J.-C Gariel, J.-P Meneroud, P. Dervin, M. Cushing, B. Gaubert, S. Vidal and A.-M Duval, 1995. A topographic effect study in the Nice region. In: Proceeding of the 5th Inter. Conf. on Seism. Zonation, Nice, France.
O
125- Ohtsuki, A. and K. Harumi, 1983. Effect of topography and subsurface inhomogeneties on seismic SV waves. Earthquake Engineering and Structural Dynamics, 11.
126- Ohtsuki, A. et al., 1984a. Effect of topography and subsurface inhomogenity on seismic Rayleigh waves. Earthquake Engineering and Structural Dynamics, 12.
127- Ohtsuki, A. et al., 1984b. Effect of lateral inhomogenity on seismic waves, II. Observations and analysis. Earthquake Engineering and Structural Dynamics, 12
128- Ohtsuki, A., 1986. A study on the dynamic behavior of the ground with irregular dipping layers. Doctoral Thesis. Chuo University, Tokyo, Japan(in Japanese).
129- Ortiz-Aleman, C., F.J. Sanchez-Sesma, J.L. Rodrigues-Zuniga and F. Luzon, 1998. Computing topographical 3D site effects using a fast IBEM/conjugate gradient approach. . Bull. Seism. Soc. Am., 88.
P
130- Paolucci, R., E. Faccioli, F. Chiesa, R. Cotignola, 2000. Searching for 2D/3D site response patterns in weak and strong motion array data from different regions. In: Proceeding of the 6th Inter. Conf. on Seism. Zonation. Palm Springs, California(USA).
131- Paolucci, R. and A. Rimoldi, 2002. Seismic amplification for 3D steep topographic irregularities.In: Proceeding 12th European Conference of Earthquake Engineering
132- Papageorgiou, A. S. & D. Pei, 1998. A discrete wavenumber boundary element method for study of the 3-D response of 2-D scatteres. Earth. Eng. and Struc. Dyn., 27.
133- Pedersen, H., B. LeBrun, D. Hatzfeld, M. Campillo and P.-Y. Bard, 1994a. Ground motion amplitude across ridges. Bull. Seism. Soc. Am., 84.
134- Pedersen, H.A., F.J. Sanchez-Sesma and M. Campillo, 1994b. Three-dimensional scattering by two-dimensional topographies. Bull. Seism. Soc. Am., 84.
135- Pedersen, H.A., M. Campillo and F.J. Sanchez-Sesma, 1995a. Azimuth depedent wave amplification in alluvial valleys. Soil dynamics and earthquake engineering, 14.
136- Pedersen, H.A. et al., 1995b. Wave diffraction in multilayered media with the Indirect Boundary Element Method: application to 3-D diffraction of long-period surface waves by a 2-D litospheric structures. Geophys. J. Int., 125 .
136-2- Pitilakis, K.D. et al., 2002. 2D vs 1D site effects with potential applications to seismic norms: the cases of EUROSEISTEST and Thessaloniki.
R
137- Recommandations AFPS 90, 1990 (in French)
138- Reid, H.F., 1910. The California Earthquake of April 18, 1906: Vol.2 The Mechanics of the Earthquake, Report of State Earthquake Commission, Carnegie Institute of Washington, Washington D.C.
S
139- Sabina, F.J. & J.R. Willis, 1975. Scattering of SH waves by a rough half – space of arbitrary slope. Journal of Geophysical Researches, 42.
140- Sanchez-Sesma, F.J. & E. Rosenblueth, 1979. Ground motion of canyons of arbitrary shape under incident SH waves. Earth. Eng. and Struc. Dyn., 7.
141- Sanchez-Sesma, F.J. and J.A. Esquivel, 1980. Ground motion on ridges under incident SH waves. In: Proceeding of 7th WCEE, Istanbul, Turkey
142- Sanchez-Sesma, F.J. et al., 1982a. A boundary method for elastic wave diffraction: application to scattering SH waves by surface irregularities. Bull. Seism. Soc. Am., 72
143- Sanchez-Sesma, F.J. et al., 1982b. A boundary method for elastic wave diffraction. Application to scattering of SH waves by surface irregularities. Bull. Seism. Soc. Am.,72
144- Sanchez-Sesma, F.J., 1983. Diffraction of elastic waves by three-dimensional surface irregularities. Bull. Seism. Soc. Am.,73.
145- Sanchez-Sesma, F.J. et al., 1984. Scattering of elastic waves by three-dimensional topographies. In: Proceeding of 8th WCEE, San Fransisco, California, USA
146- Sanchez-Sesma, F.J., 1985. Diffraction of elastic SH waves by wedges. Bull. Seism. Soc. Am.,75
147- Sanchez-Sesma, F.L., 1987. Site effects on strong ground motion. Soil Dynamics and Earthquake Engineering, 6(2).
148- Sanchez-Sesma, F.J., 1990. Elementary solutions for the response of wedge-shaped medium to incident SH and SV waves. Bull. Seism. Soc. Am., 80.
149- Sanchez–Sesma, F.J. & M. Campillo, 1991. Diffraction of P, SV and Rayleigh waves by topographical features:a boundary integral formulation. . Bull. Seism. Soc. Am., 81
150- Sanchez-Sesma, F.J. et al., 1993a. An indirect boundary element method applied to simulate the seismic response of alluvial valleys for incident P, SV and Rayleigh waves. Earth. Eng. and Struc. Dyn., 22
151- Sanchez-Sesma, F. L. and M. Campillo. 1993b. Topographic effects for incident P, SV and rayleigh waves. Tectonophysics, 218
152- Sanchez-Sesma F.J. & Luzon F.; 1995; “Seismic response of three dimensional alluvial valleys for incident P, SV and Rayleigh waves”; Bull. Seismol. Soc. Am.; 85, 269-284
153- Sato, T. et al., 2001, “ Differences between site characteristions obtained from microtremors, S- Waves, P-Waves and Codas”, BSSA, Vol. 91, pp.313-334.
154- Seo, K. et al., 1991, “ Microtremor measurements in the San Francisco bay area, Part I: Fundamental characteristies of microtremors”, Proc. of 4th international Conference on Seismic Zonation, USA
155- Shah, A.H. & K.C. Wong, 1982. Diffraction of plane SH waves in a half – space. Earth. Eng. and Struc. Dyn., 10
156- Singh, S.K. and F.J. Sabina, 1977. Ground-motion amplification by topographic depressions for incident P waves under acoustic approximation. Bull. Seism. Soc. Am.,67
157- Siro, L. 1982. Southern Italy November 23, 1980 earthquake. In: Proceeding of the 7th European Conference on Earthquake Engineering, Athens
158- Sitar, N. and G.W. Clough, 1983. Seismic response of steep slopes in cemented soils, J. Geotech. Eng. ASCE, 109
159- Smith, W.D., 1975. The application of finite element analysis to elastic body wave propagation problems, Geophs. J. R. Astr. Soc., 42
160- Spudich, P. et al., 1996. Directional topographic site response at tarzana obsreved in aftershocks of the 1994 Northridge, California, earthquake: implications for mainshock motions. Bull. Seism. Soc. Am., 86.
161- Stokes, G.G., 1849. Dynamical theory of diffraction. Math. And Phys. Papers, 1849,2
T
162- Taber, J. J., 2000, “Comparison of Site response determination techniques in the Wellington region, NewZeland”, Proc. of 12WCEE
163- Takenaka, H. & B.L.N. Kennett, 1996a. A 2.5-D time-domain elastodynamic equation for a general anisotropic medium. Geophys. J. Int., 127.
164- Takenaka, H. et al., 1996b. Effect of 2-D topography on the 3-D seismic wavefield using a 2.5-D discrete wavenumber-boundary integral equation method. Geophys. J. Int., 124
165- Trifunac, M.D., 1973. Scattering of plane SH waves by a semi – cylindrical canyon. Earth. Eng. and Struc. Dyn., 1.
166- Tucker, B.E., J.L. King, D. Hatzfeld and I.J.Neresov, 1984. Observations of hard rock site effects. Bull. Seism. Soc. Am., 74.
U
167- Udwadia, F. E. and Trifunac, M. D., 1973, “Comparison of earthquake and microtremor ground motions in El. Centro, California”, BSSA, Vol. 63., pp. 1227-1253.
V
168- Vogt, R.F. et al., 1988. Wave scattering by a canyon of arbitrary shape in a layered half – space. Earth. Eng. and Struc. Dyn., 16.
W
169- Wolf J. P.; 1985; Dynamic Soil-Structure Interaction; Prentice Hall
170- Wong, H.L. & M.D. Trifunac, 1974. Scattering of plane SH waves by a semi – elliptical. Earth. Eng. and Struc. Dyn., 3.
171- Wong, H.L., 1982. Effect of surface topography on the diffraction of P, SV and Rayleigh waves. Bull. Seism. Soc. Am., 72.
Z
172- Zahradnik, J., 1995. Simple elastic finite-difference scheme. Bull. Seism. Soc. Am., 85.
173- Zahradnik, J. & P. Moczo, 1996. Hybrid seismic modeling based on discrete – wavenumber and finite-difference methods. Pure Applied Geophysics, 148
174- Zhang, B., S. Papageorgiou and J.L. Tassoulas, 1998. A hybrid numerical technique, combining the finite-element and boundary-element methods, for modeling the 3D response of 2D scatters. . Bull. Seism. Soc. Am., 88.
175- Zhao, C. et al., 1992. A numerical model for wave scattering problems in infinite media due to P and SV wave incidences. Int. Jour. of Num. Meth. in Eng., 33.
176 – جعفری، محمدکاظم، محسن کمالیان و آرش رزمخواه، 2002 . مطالعات تکمیلی ریزپهنهبندی جنوب تهران از دیدگاه شرایط ساختگاه، مجموعه مقالات سومین همایش بینالمللی مهندسی ژئوتکنیک و مکانیک خاک ایران، تهران، ایران.
177 - جعفری، محمدکاظم، آرش رزمخواه و همکاران، 2002 . ریزپهنهبندی لرزهای شمال تهران از دیدگاه شرایط ساختگاه ، برنامه ملی تحقیقات، کمیسیون عمران و زلزله، شورای پژوهشهای علمی کشور.
178- جعفری، محمدکاظم، آرش رزمخواه و همکاران، 2002 . مطالعات تکمیلی ریزپهنهبندی لرزهای جنوب تهران، برنامه ملی تحقیقات، کمیسیون عمران و زلزله، شورای پژوهشهای علمی کشور.
179 - رزمخواه، آرش، محمدکاظم جعفری و محمدرضا قایمقامیان، 2002 . مطالعات خردلرزهسنجی شمال تهران، مجموعه مقالات سومین همایش بینالمللی مهندسی ژئوتکنیک و مکانیک خاک ایران، تهران، ایران.
180- جعفری، محمدکاظم، آرش رزمخواه و همکاران، 2002 . ارزیابی تجربی عوارض توپوگرافی بر اثرات ساختگاهی.. پروژه پژوهشی پژوهشگاه بینالمللی زلزلهشناسی و مهندسی زلزله (در حال انجام).
181 – جعفری، محمدکاظم و آرش رزمخواه ، 2003 . ریزپهنهبندی جنوب تهران از دیدگاه اثرهای ساختگاه، پژوهشنامه زلزله شناسی و مهندسی زلزله، سال پنجم، شماره چهارم .
182 – جعفری، محمدکاظم، محمد کشاورز بخشایش، عبدا... سهرابی و آرش رزمخواه، 2003 . ویژگیهای آبرفتهای جنوب تهران از دیدگاه ژئوتکنیک لرزهای، فصلنامه علوم زمین ، پائیز و زمستان 81، شماره 45-46.
183 – جعفری، محمدکاظم، آرش رزمخواه و محمد کشاورز بخشایش. پهنهبندی سرعت موج برشی آبرفهای گستره تهران. پذیرفته شده جهت چاپ در نشریه دانشکده فنی دانشگاه تهران .
184 – دهقانی، محمدرضا، 1996. بررسی تحلیلی اثرات توپوگرافی بر پاسخ لرزهای آبرفت. پایاننامه کارشناسی ارشد مهندسی عمران – گرایش مکانیک خاک و مهندسی پی به راهنمایی دکتر محمدکاظم جعفری، دانشگاه صنعتی شریف .
185 – کمالیان، محسن، محمدکاظم جعفری، آرش رزمخواه و عبدا… سهرابی،2001 . بررسی عددی تاثیرات عوارض توپوگرافی بر پاسخ لرزه ای سطح زمین. پروژه پژوهشی پژوهشگاه بینالمللی زلزلهشناسی و مهندسی زلزله (در حال انجام).
186- کمالیان، محسن و عبدا... سهرابی، 2003، تحلیل دینامیکی عوارض توپوگرافی دو بعدی در حوزه زمان با استفاده از روش اجزای مرزی، ارائه شده جهت داوری به مجله استقلال.
187 – گتمیری، بهروز، محسن کمالیان، مهدی کریمی جعفری و عبدا... سهرابی ، 2003 . تحلیل لرزهای درههای آبرفتی اشباع در فضای زمان با استفاده از ترکیب روشهای اجزائ محدود و عناصر مرزی. مجموعه مقالات چهارمین کنفرانس بینالمللی زلزله شناسی و مهندسی زلزله، تهران، ایران.
188– گتمیری، بهروز، محسن کمالیان، سیدجواد قانعفر و مهدی کریمی جعفری، 2002 . تحلیل دینامیکی محیط متخلخل اشباع ارتجاعی خمیری در فضای زمان با استفاده از ترکیب روشهای اجزائ محدود و عناصر مرزی، مجموعه مقالات سومین همایش بینالمللی مهندسی ژئوتکنیک و مکانیک خاک ایران، تهران، ایران.
189- جعفری، محمدکاظم، محسن کمالیان و آرش رزمخواه،- بررسی تاثیرات عوارض توپوگرافی بر رفتار لرزهای سطح زمین؛ مطالعه موردی شهر تهران- رساله دکتری رشته مهندسی عمران سال تحصیلی 1382
.